Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 3024, 2024 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-38321053

RESUMEN

Smoking has multiple detrimental effects on health, and is a major preventable cause of premature death and chronic disease. Despite the well-described effect of inhaled substances from tobacco smoke on cell toxicity, the association between smoking and suicidal erythrocyte death, termed eryptosis, is virtually unknown. Therefore, the blood samples of 2023 participants of the German National Cohort Study (NAKO) were analyzed using flow cytometry analysis to determine eryptosis from fluorescent annexin V-FITC-binding to phosphatidylserine-exposing erythrocytes. Blood analyses were complemented by the measurement of hematologic parameters including red blood cell count, hematocrit, hemoglobin, mean corpuscular cell volume (MCV) and mean corpuscular hemoglobin (MCH). Eryptosis was higher in smokers than in non- and ex-smokers, and positively associated with the number of cigarettes smoked daily (r = 0.08, 95% CI [0.03, 0.12]). Interestingly, despite increased eryptosis, smokers had higher red blood cell indices than non-smokers. To conclude, smokers were characterized by higher eryptosis than non-smokers, without showing any obvious detrimental effect on classic hematological parameters.


Asunto(s)
Eriptosis , Humanos , Especies Reactivas de Oxígeno/metabolismo , Estudios de Cohortes , Eritrocitos/metabolismo , Fumar , Calcio/metabolismo , Fosfatidilserinas/metabolismo , Ceramidas/metabolismo , Tamaño de la Célula
2.
Lab Med ; 48(1): 10-17, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27593171

RESUMEN

OBJECTIVE: Validation of the LT-SYS quantitative in vitro copper assay on a Roche Cobas 8000 c502 analyzer and comparison with a BIOMED assay on a Roche Cobas Mira analyzer. METHODS: Imprecision and bias were quantified at different concentration levels (serum and plasma) over a 20-day period. Linearity was assessed covering a range from 4.08 µmol/L to 33.8 µmol/L. Limit of blank (LoB) and limit of detection (LoD) were established based on a total of 120 blank and low-level samples. The method comparison was based on 58 plasma samples. RESULTS: Within-run imprecision ranged from 0.7% to 1.2% and within-laboratory imprecision from 1.4% to 3.3%. Relative bias for the 2 serum pools with known target values was less than 2.5%. The assay did not deviate from linearity over the tested measuring range. LoB and LoD were 0.12 µmol/L and 0.23 µmol/L, respectively. The method comparison revealed an average deviation of 11.5% (2.016 µmol/L), and the linear regression fit was y = 1.464 + 0.795x. CONCLUSIONS: The LT-SYS copper assay characterized in this study showed a fully acceptable performance with good degrees of imprecision and bias, no deviation from linearity in the relevant measuring rangem, and very low LoB and LoD.


Asunto(s)
Pruebas de Química Clínica/métodos , Pruebas de Química Clínica/normas , Cobre/sangre , Adulto , Pruebas de Química Clínica/instrumentación , Femenino , Humanos , Límite de Detección , Modelos Lineales , Masculino , Estándares de Referencia , Reproducibilidad de los Resultados
3.
Science ; 348(6239): 1139-43, 2015 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-25977371

RESUMEN

The evolution of eusociality is one of the major transitions in evolution, but the underlying genomic changes are unknown. We compared the genomes of 10 bee species that vary in social complexity, representing multiple independent transitions in social evolution, and report three major findings. First, many important genes show evidence of neutral evolution as a consequence of relaxed selection with increasing social complexity. Second, there is no single road map to eusociality; independent evolutionary transitions in sociality have independent genetic underpinnings. Third, though clearly independent in detail, these transitions do have similar general features, including an increase in constrained protein evolution accompanied by increases in the potential for gene regulation and decreases in diversity and abundance of transposable elements. Eusociality may arise through different mechanisms each time, but would likely always involve an increase in the complexity of gene networks.


Asunto(s)
Abejas/genética , Evolución Molecular , Flujo Genético , Conducta Social , Transcriptoma , N-Acetiltransferasa de Aminoácidos , Animales , Abejas/clasificación , Elementos Transponibles de ADN , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Genoma de los Insectos/genética , Filogenia , Selección Genética , Factores de Transcripción/química , Factores de Transcripción/genética
4.
Mol Ecol ; 22(12): 3208-10, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24433572

RESUMEN

The article by Harpur et al. (2012) 'Management increases genetic diversity of honey bees via admixture' concludes that '…honey bees do not suffer from reduced genetic diversity caused by management and, consequently, that reduced genetic diversity is probably not contributing to declines of managed Apis mellifera populations'. In the light of current honeybee and beekeeping declines and their consequences for honeybee conservation and the pollination services they provide, we would like to express our concern about the conclusions drawn from the results of Harpur et al. (2012). While many honeybee management practices do not imply admixture, we are convinced that the large-scale genetic homogenization of admixed populations could drive the loss of valuable local adaptations. We also point out that the authors did not account for the extensive gene flow that occurs between managed and wild/feral honeybee populations and raise concerns about the data set used. Finally, we caution against underestimating the importance of genetic diversity for honeybee colonies and highlight the importance of promoting the use of endemic honeybee subspecies in apiculture.


Asunto(s)
Crianza de Animales Domésticos , Abejas/genética , Variación Genética , Genética de Población , Animales
5.
Ecol Evol ; 2(6): 1304-11, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22833802

RESUMEN

Drone aggregations are a widespread phenomenon in many stingless bee species (Meliponini), but the ultimate and proximate causes for their formation are still not well understood. One adaptive explanation for this phenomenon is the avoidance of inbreeding, which is especially detrimental for stingless bees due to the combined effects of the complementary sex-determining system and the small effective population size caused by eusociality and monandry. We analyzed the temporal genetic dynamics of a drone aggregation of the stingless bee Scaptotrigona mexicana with microsatellite markers over a time window of four weeks. We estimated the drones of the aggregation to originate from a total of 55 colonies using sibship re-construction. There was no detectable temporal genetic differentiation or sub-structuring in the aggregation. Most important, we could exclude all colonies in close proximity of the aggregation as origin of the drones in the aggregation, implicating that they originate from more distant colonies. We conclude that the diverse genetic composition and the distant origin of the drones of the S. mexicana drone congregation provides an effective mechanism to avoid mating among close relatives.

6.
J Invertebr Pathol ; 110(1): 48-53, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22349145

RESUMEN

Bumblebees are of profound ecological importance because of the pollination services they provide in natural and agricultural ecosystems. Any decline of these pollinators is therefore of great concern for ecosystem functioning. Increased parasite pressures have been discussed as a major factor for the loss of pollinators. One of the main parasites of bumblebees is Nosema bombi, an intracellular microsporidian parasite with considerable impact on the vitality of the host. Here we study the effect of host colony density and host genetic variability on N. bombi infections in natural populations of the bumblebee Bombus terrestris. We sampled males and workers from six B. terrestris populations located in an agricultural landscape in Middle Sweden to determine the prevalence and degree of N. bombi infections. All individuals were genotyped with five microsatellite markers to infer the colony densities in the sampled populations and the genetic variability of the host population. We confirmed that genetic variability and sex significantly correlate with the degree of infection with N. bombi. Males and workers with lower genetic variability had significantly higher infection levels than average. Also colony density had a significant impact on the degree of infection, with high density populations having higher infected individuals.


Asunto(s)
Interacciones Huésped-Patógeno , Himenópteros/genética , Himenópteros/microbiología , Nosema , Animales , Femenino , Masculino , Prevalencia , Suecia
7.
Front Zool ; 8(1): 13, 2011 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-21651814

RESUMEN

BACKGROUND: Cooperation and conflict in social insects are closely linked to the genetic structure of the colony. Kin selection theory predicts conflict over the production of males between the workers and the queen and between the workers themselves, depending on intra-colonial relatedness but also on other factors like colony efficiency, sex ratios, cost of worker reproduction and worker dominance behaviour. In most bumblebee (Bombus) species the queen wins this conflict and often dominates male production. However, most studies in bumblebees have been conducted with only a few selected, mostly single mated species from temperate climate regions. Here we study the genetic colony composition of the facultative polyandrous neotropical bumblebee Bombus wilmattae, to assess the outcome of the queen-worker conflict over male production and to detect potential worker policing. RESULTS: A total of 120 males from five colonies were genotyped with up to nine microsatellite markers to infer their parentage. Four of the five colonies were queen right at point of time of male sampling, while one had an uncertain queen status. The workers clearly dominated production of males with an average of 84.9% +/- 14.3% of males being worker sons. In the two doubly mated colonies 62.5% and 96.7% of the male offspring originated from workers and both patrilines participated in male production. Inferring the mother genotypes from the male offspring, between four to eight workers participated in the production of males. CONCLUSIONS: In this study we show that the workers clearly win the queen-worker conflict over male production in B. wilmattae, which sets them apart from the temperate bumblebee species studied so far. Workers clearly dominated male production in the singly as well the doubly mated colonies, with up to eight workers producing male offspring in a single colony. Moreover no monopolization of reproduction by single workers occurred.

8.
Behav Genet ; 41(2): 323-8, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20640499

RESUMEN

Division of labour is a fundamental property of any social system. The specialization of different individuals in different tasks increases the overall work performance and efficiency. Specialization is thought to be the very foundation of the success of human societies but also in complex colonies of social insects. In human societies an advanced form of division of labour, especially since the industrialisation, is shift work, where individuals perform the same task but in subsequent cohorts in time. Although social insects can measure and are aware of time, shift work has not been documented in colonies of social insects so far. We observed foragers of two honeybee (Apis mellifera) colonies (approximately 140 workers each) and genotyped them with microsatellite DNA markers. We determined paternity and assigned them to the various subfamilies in the colony to test whether there is genetic variance for shift work in foraging honeybees. We could show that the patriline identity of the foragers had a significant effect on foraging either in the morning or evening. Individual foragers differed in their preference for the "early" or "late" shift, and shift work indeed existed in the colony.


Asunto(s)
Abejas/fisiología , Polen/genética , Animales , Conducta Animal , Estudios de Cohortes , ADN/genética , Conducta Alimentaria , Genotipo , Repeticiones de Microsatélite/genética , Modelos Genéticos , Conducta Sexual Animal , Conducta Social
9.
Biol Lett ; 3(5): 513-6, 2007 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-17638672

RESUMEN

Elaborate division of labour has contributed significantly to the ecological success of social insects. Division of labour is achieved either by behavioural task specialization or by morphological specialization of colony members. In physical caste systems, the diet and rearing environment of developing larvae is known to determine the phenotype of adult individuals, but recent studies have shown that genetic components also contribute to the determination of worker caste. One of the most extreme cases of worker caste differentiation occurs in the army ant genus Eciton, where queens mate with many males and colonies are therefore composed of numerous full-sister subfamilies. This high intracolonial genetic diversity, in combination with the extreme caste polymorphism, provides an excellent test system for studying the extent to which caste determination is genetically controlled. Here we show that genetic effects contribute significantly to worker caste fate in Eciton burchellii. We conclude that the combination of polyandry and genetic variation for caste determination may have facilitated the evolution of worker caste diversity in some lineages of social insects.


Asunto(s)
Hormigas/fisiología , Conducta Sexual Animal , Animales , Hormigas/genética , Femenino , Variación Genética , Jerarquia Social , Masculino , Polimorfismo Genético
10.
Naturwissenschaften ; 94(7): 567-73, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17333100

RESUMEN

Recruitment precision, i.e. the proportion of recruits that reach an advertised food source, is a crucial adaptation of social bees to their environment. Studies with honeybees showed that recruitment precision is not a fixed feature, but it may be enhanced by factors like experience and distance. However, little is known regarding the recruitment precision of stingless bees. Hence, in this study, we examined the effects of experience and spatial distance on the precision of the food communication system of the stingless bee Scaptotrigona mexicana. We conducted the experiments by training bees to a three-dimensional artificial patch at several distances from the colony. We recorded the choices of individual recruited foragers, either being newcomers (foragers without experience with the advertised food source) or experienced (foragers that had previously visited the feeder). We found that the average precision of newcomers (95.6 +/- 2.61%) was significantly higher than that of experienced bees (80.2 +/- 1.12%). While this might seem counter-intuitive on first sight, this "loss" of precision can be explained by the tendency of experienced recruits to explore nearby areas to find new rewarding food sources after they had initially learned the exact location of the food source. Increasing the distance from the colony had no significant effect on the precision of the foraging bees. Thus, our data show that experience, but not the distance of the food source, affected the patch precision of S. mexicana foragers.


Asunto(s)
Abejas/fisiología , Conducta Animal , Conducta Alimentaria/fisiología , Aclimatación , Alimentación Animal , Animales , Bancos de Muestras Biológicas , México , Reproducibilidad de los Resultados
11.
Naturwissenschaften ; 92(10): 488-91, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16151795

RESUMEN

The queen is the dominant female in the honeybee colony, Apis mellifera, and controls reproduction. Queen larvae are selected by the workers and are fed a special diet (royal jelly), which determines caste. Because queens mate with many males a large number of subfamilies coexist in the colony. As a consequence, there is a considerable potential for conflict among the subfamilies over queen rearing. Here we show that honeybee queens are not reared at random but are preferentially reared from rare "royal" subfamilies, which have extremely low frequencies in the colony's worker force but a high frequency in the queens reared.


Asunto(s)
Abejas , Comportamiento de Nidificación , Conducta Social , Animales , Femenino , Abejas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...